Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Environ Pollut ; 349: 123986, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636833

RESUMO

The spread of biogenic matrices for agricultural purposes can lead to plastic input into soils, raising a question on possible consequences for the environment. Nonetheless, the current knowledge concerning the presence of plastics in biogenic matrices is very poor. Therefore, the objective of the present study was a quali-quantitative characterization of plastics in different matrices reused in agriculture as manures, digestate, compost and sewage sludges. Plastics were quantified and characterized using a Fourier Transform Infrared Spectroscopy coupled with an optical microscope (µFT-IR) in Attenuated Total Reflectance mode. Our study showed the presence of plastics in all the investigated samples, albeit with differences in the content among the matrices. We measured a lower presence in animal matrices (0.06-0.08 plastics/g wet weight w.w.), while 3.14-5.07 plastics/g w.w. were measured in sewage sludges. Fibres were the prevalent shape and plastic debris were mostly in the micrometric size. The most abundant polymers were polyester (PEST), polypropylene (PP) and polyethylene (PE). The worst case was observed in the compost sample, where 986 plastics/g w.w. were detected. The majority of these plastics were compostable and biodegradable, with only 8% consisting of fragments of PEST and PE. Our results highlighted the need to thoroughly evaluate the contribution of reused matrices in agriculture to the plastic accumulation in the soil system.


Assuntos
Agricultura , Plásticos , Esgotos , Poluentes do Solo , Solo , Plásticos/análise , Solo/química , Poluentes do Solo/análise , Esgotos/química , Compostagem/métodos , Esterco/análise , Monitoramento Ambiental/métodos , Reciclagem , Animais
2.
MethodsX ; 12: 102599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379723

RESUMO

Sewage sludge (biosolids) management represents a worldwide issue. Due to its valuable properties, approximately one half of the EU production is recovered in agriculture. Nevertheless, growing attention is given to potential negative effects deriving from the presence of harmful pollutants. It is recognized that a (even very detailed) chemical characterization is not able to predict ecotoxicity of a mixture. However, this can be directly measured by bioassays. Actually, the choice of the most suitable tests is still under debate. This paper presents a multilevel characterization protocol of sewage sludge and other organic residues, based on bioassays and chemical-physical-microbiological analyses. The detailed description of the experimental procedure includes all the involved steps: the criteria for selecting the organic matrices to be tested and compared; the sample pre-treatment required before the analyses execution; the chemical, physical and microbiological characterisation; the bioassays, grouped in three classes (baseline toxicity; specific mode of action; reactive mode of action); data processing. The novelty of this paper lies in the integrated use of advanced tools, and is based on three pillars:•the direct ecosafety assessment of the matrices to be reused.•the adoption of innovative bioassays and analytical procedures.•the original criteria for data normalization and processing.

3.
Environ Toxicol Chem ; 42(10): 2193-2200, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401854

RESUMO

The potential impact of concrete mixtures containing steel slag (SS) as a partial replacement of natural aggregates (NA) on the terrestrial ecosystem was assessed using a battery of plant-based bioassays. Leaching tests were conducted on four concrete mixtures and one mixture containing only NA (reference concrete). Leachates were tested for phytotoxicity using seeds of Lepidium sativum, Cucumis sativus, and Allium cepa. Emerging seedlings of L. sativum and A. cepa were used to assess DNA damage (comet test). The genotoxicity of the leachates was also analyzed with bulbs of A. cepa using the comet and chromosome aberration tests. None of the samples caused phytotoxic effects. On the contrary, almost all the samples supported the seedlings; and two leachates, one from the SS-containing concrete and the other from the reference concrete, promoted the growth of C. sativus and A. cepa. The DNA damage of L. sativum and A. cepa seedlings was significantly increased only by the reference concrete sample. In contrast, the DNA damage in A. cepa bulbs was significantly enhanced by the reference concrete but also by that of a concrete sample with SS. Furthermore, all leachates caused an increase in chromosomal aberrations in A. cepa bulbs. Despite some genotoxic effects of the concrete on plant cells, the partial replacement of SS does not seem to make the concrete more hazardous than the reference concrete, suggesting the potential use of SS as a reliable recycled material. Environ Toxicol Chem 2023;42:2193-2200. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

4.
Bull Environ Contam Toxicol ; 111(1): 3, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341817

RESUMO

Steel slags, the main waste product from the steel industry, may have several reuse possibilities. Among others, building applications represent a crucial field. However, the potential impact of harmful substances on the environment should be assessed. The aim of this study was to assess the phytotoxicity of steel slags (SS) and concrete mixtures cast with a partial replacement of SS (CSS). Leaching tests were carried out on four SS and four CSS according to EN 12457-2 and UNI EN 15863, respectively. Each leachate was assayed using root elongation tests on 30 seeds of Allium cepa, Cucumis sativus, and Lepidium sativum, respectively, and on 12 bulbs of A. cepa. The latter also allowed the analysis of other macroscopic parameters of toxicity (turgidity, consistency, colour change and root tip shape) and the evaluation of the mitotic index on 20,000 root tip cells per sample. None of the samples induced phytotoxic effects on the organisms tested: all samples supported seedlings emergence, verified by root elongation comparable to, or even greater than, that of the negative controls, and did not affect cell division, as evidenced by mitotic index values. The absence of phytotoxicity demonstrated by the leachates allows SS and SS-derived concrete to be considered as reliable materials suitable for use in civil constructions or in other engineering applications, with economic and environmental advantages, such as the reduction of the final disposal in landfills as well as the consumption of natural resources.


Assuntos
Resíduos Industriais , Aço , Resíduos Industriais/análise , Sementes/química , Materiais de Construção/toxicidade
5.
Environ Technol ; 43(22): 3426-3443, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33900149

RESUMO

This research aimed to identify a tool to objectively analyse the performance and the environmental contextualisation of sewer systems (SwSs) and wastewater treatment plants (WWTPs). This procedure performs assessment by calculating performance indices which could be subsequently applied to SwSs and WWTPs with different characteristics. The proposed tool can be applied conveniently over the years by managers of integrated urban water management systems for the analysis of different realities also allowing the evaluation of the effects of upgrades carried out during the management phases. The proposed analysis allows the optimisation of SwSs and can profitably guide the choice and the priority among possible interventions for the sewerage infrastructure and WWTPs providing a verification and evaluation protocol as well as a financial planning tool.


Assuntos
Águas Residuárias , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
6.
Membranes (Basel) ; 11(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34940478

RESUMO

Minimizing the biological sewage sludge (BSS) produced by wastewater treatment plants (WWTPs) represents an increasingly difficult challenge. With this goal, tests on a semi-full scale Thermophilic Alternate Membrane Biological Reactor (ThAlMBR) were carried out for 12 months. ThAlMBR was applied both on thickened (TBSS) and digested biological sewage sludge (DBSS) with alternating aeration conditions, and emerged: (i) high COD removal yields (up to 90%), (ii) a low specific sludge production (0.02-0.05 kgVS produced/kgCODremoved), (iii) the possibility of recovery the aqueous carbon residue (permeate) in denitrification processes, replacing purchased external carbon sources. Based on the respirometric tests, an excellent biological treatability of the permeate by the mesophilic biomass was observed and the denitrification kinetics reached with the diluted permeate ((4.0 mgN-NO3-/(gVSS h)) were found comparable to those of methanol (4.4 mgN-NO3-/(gVSS h)). Moreover, thanks to the similar results obtained on TBSS and DBSS, ThAlMBR proved to be compatible with diverse sludge line points, ensuring in both cases an important sludge minimization.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34639629

RESUMO

The interest in research on up-flow anaerobic sludge blanket (UASB) reactors is growing. The meta-analysis of bibliometric data highlighted the growing interest in four diverse topics: (i) energy recovery production; (ii) combination with other treatments; (iii) the study of processes for the removal of specific pollutants and, (iv) characterization of microbial community and granular sludge composition. In particular, the papers published in the first 6 months of 2021 on this process were selected and critically reviewed to highlight and discuss the results, the gaps in the literature and possible ideas for future research. Although the state of research on UASB is to be considered advanced, there are still several points that will be developed in future research such as the consolidation of the results obtained on a semi-industrial or real scale, the use of real matrices instead of synthetic ones and a more in-depth study of the effect of substances such as antibiotics on the microbiota and microbiome of UASB granular biomass. To date, few and conflicting data about the environmental footprint of UASB are available and therefore other studies on this topic are strongly suggested.


Assuntos
Microbiota , Esgotos , Anaerobiose , Bibliometria , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33638072

RESUMO

Northern Italy was the most affected by CoViD-19 compared to other Italian areas and comprises zones where air pollutants concentration was higher than in the rest of Italy. The aim of the research is to determine if particulate matter (PM) has been the primary cause of the high CoViD-19 spread rapidity in some areas of Northern Italy. Data of PM for all the 41 studied cities were collected from the local environmental protection agencies. To compare air quality data with epidemiological data, a statistical analysis was conducted identifying the correlation matrices of Pearson and Spearman, considering also the possible incubation period of the disease. Moreover, a model for the evaluation of the epidemic risk, already proposed in literature, was used to evaluate a possible influence of PM on CoViD-19 spread rapidity. The results exclude that PM alone was the primary cause of the high CoVid-19 spread rapidity in some areas of Northern Italy. Further developments are necessary for a better comprehension of the influence of atmospheric pollution parameters on the rapidity of spread of the virus SARS-CoV-2, since a synergistic action with other factors (such as meteorological, socio-economic and cultural factors) could not be excluded by the present study.

9.
Environ Sci Pollut Res Int ; 28(42): 59452-59461, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33570731

RESUMO

Recently, among AOPs, photoelectrocatalysis (PEC) on TiO2 is gaining interest. In this study, five different real waters sampled in four different points of the integrated urban water management (IUWM) system were tested with PEC and UV alone, for comparison. This work aims to verify the effect of the PEC suggesting the optimal position in IUWM system where the PEC should be located to obtain the best performance. In groundwaters (GWs), PEC effectively removed atrazine-based compounds (> 99%), trichloroethylene, and perchloroethylene (96%), after 15 min of reaction time. However, given the low concentrations of emerging compounds, the synergistic effect of UV radiation with the catalyst and with the polarization of the mesh was not visible, with very few differences compared with the results obtained with UV alone. Pharmaceutical industrial wastewater (IWW) showed a significant increase in biodegradability after 2 h, both if subjected to PEC or UV (200%), despite the absence of COD removal. The PEC applied on IWW from a sewage sludge treatment plant allowed to effectively remove the COD (39.6%) and increase the biodegradability (300%). Good results in terms of COD removal (33.9%) and biodegradability increase (+900%) were also achieved testing PEC on wastewater treatment plant effluent. Except for GWs, PEC allowed significant EEO savings respect to UV alone (76.2-99.1%).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Titânio , Eliminação de Resíduos Líquidos , Águas Residuárias , Abastecimento de Água
10.
Process Saf Environ Prot ; 146: 952-960, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33390670

RESUMO

Nitrogen dioxide (NO2) can have harmful effects on human health and can act as a precursor for the formation of other air pollutants in urban environment such as secondary PM2.5 and ozone. The lockdown measures for CoViD-19 allowed to simulate on a large scale the massive and prolonged reduction of road traffic (the main source for NO2 in urban environment). This work aims to selectively assess the maximum impact that total traffic blocking measures can have on NO2. For this reason, three megacities (London, Milan and Paris) were chosen which had similar characteristics in terms of climatic conditions, population, policies of urban traffic management and lockdown measures. 52 air quality control units have been used to compare data measured in lockdown and in the same periods of previous years, highlighting a significant decrease in NO2 concentration due to traffic (London: 71.1 % - 80.8 %; Milan: 8.6 % - 42.4 %; Paris: 65.7 % - 79.8 %). In 2020 the contribution of traffic in London, Milan and Paris dropped to 3.3 ± 1.3 µg m-3, 6.1 ± 0.8 µg m-3, and 13.4 ± 1.5 µg m-3, respectively. Despite the significant reduction in the NO2 concentration, in UT stations average NO2 concentrations higher than 40 µg m-3 were registered for several days. In order to reduce the pollution, the limitation of road traffic could be not enough, but a vision also aimed at rethink the vehicles and their polluting effects should be developed.

11.
Environ Mol Mutagen ; 62(1): 66-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926468

RESUMO

Steel slags (SS) are the major waste produced by iron and steel industry. Slags may be reused as recycled materials, instead of natural aggregates (NA), to reduce the final disposal in a landfill and the exploitation of raw materials. However, the reuse of SS may generate a potential release of toxic compounds for the environment and humans. The purpose of this study was to evaluate the toxicity and genotoxicity of SS, in comparison with NA, by using an integrated chemical-biological approach to enable their safe reuse in engineering applications. Leaching solutions from samples were obtained by using short-term leaching tests (CEN EN 12457-2, 2004) usually adopted for the evaluation of waste recovery and final disposal. Chemical analyses of leachates were performed according to the Italian legislation on waste recovery (Ministerial Decree 186/2006). The leaching solutions were assayed by using toxicity test on Daphnia magna. Moreover, mutagenicity/genotoxicity tests on Salmonella typhimurium, Allium cepa, and human leucocytes and fibroblasts were carried out. The releases of pollutants from all samples were within the limits of the Italian legislation for waste recovery. Despite the effects that SS and NA could have on different cells, in terms of toxicity and genotoxicity, globally, SS do not seem to be any more hazardous than NA. This ecotoxicological assessment, never studied before, is important for promoting further studies that may support the decision-making process regarding the use of such types of materials.


Assuntos
Poluentes Ambientais/toxicidade , Resíduos Perigosos/efeitos adversos , Aço/toxicidade , Linhagem Celular , Ecotoxicologia/métodos , Fibroblastos/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Masculino , Testes de Mutagenicidade/métodos , Testes de Toxicidade/métodos , Instalações de Eliminação de Resíduos
12.
Artigo em Inglês | MEDLINE | ID: mdl-33374200

RESUMO

Among the critical issues that prevent the reuse of wastewater treatment plants (WWTPs) effluents in a circular economy perspective, the microbiological component plays a key role causing infections and diseases. To date, the use of conventional chemical oxidants (e.g., chlorine) represent the main applied process for wastewater (WW) disinfection following a series of operational advantages. However, toxicity linked to the production of highly dangerous disinfection by-products (DBPs) has been widely demonstrated. Therefore, in recent years, there is an increasing attention to implement sustainable processes, which can simultaneously guarantee the microbiological quality of the WWs treated and the protection of both humans and the environment. This review focuses on treatments based on ultraviolet radiation (UV) alone or in combination with other processes (sonophotolysis, photocatalysis and photoelectrocatalysis with both natural and artificial light) without the dosage of chemical oxidants. The strengths of these technologies and the most significant critical issues are reported. To date, the use of synthetic waters in laboratory tests despite real waters, the capital and operative costs and the limited, or absent, experience of full-scale plant management (especially for UV-based combined processes) represent the main limits to their application on a larger scale. Although further in-depth studies are required to ensure full applicability of UV-based combined processes in WWTPs for reuse of their purified effluents, excellent prospects are presented thanks to an absent environmental impact in terms of DBPs formation and excellent disinfection yields of microorganisms (in most cases higher than 3-log reduction).


Assuntos
Desinfecção , Raios Ultravioleta , Águas Residuárias/microbiologia , Purificação da Água , Cloro
13.
Process Saf Environ Prot ; 143: 196-203, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32834559

RESUMO

As for the SARS coronavirus in the 2003 epidemic, the presence of SARS-CoV-2 has been demonstrated in faeces and, in some cases, urine of infected people, as well as in wastewater. This paper proposes a critical review of the state of the art regarding studies on the presence of SARS-CoV-2 in wastewater and sewage sludge, the factors affecting its inactivation and the main proposed treatments. In-vitro tests demonstrated low resistance of SARS-CoV-2 to high temperature, while even significant changes in pH would not seem to determine the disappearance of the virus. In real wastewater and in sewage sludge, to date studies on the influence of the different parameters on the inactivation of SARS-CoV-2 are not available. Therefore, studies involving other HCoVs such as SARS-CoV and HCoV-229E have been also considered, in order to formulate a hypothesis regarding its behaviour in sewage and throughout the steps of biological treatments in WWTPs. Finally, SARS-CoV-2 in wastewater might track the epidemic trends: although being extremely promising, an effective and wide application of this approach requires a deeper knowledge of the amounts of viruses excreted through the faeces and the actual detectability of viral RNA in sewage.

14.
Sci Total Environ ; 732: 139280, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32402928

RESUMO

Based on the rapid spread of the CoViD-2019, a lockdown was declared in the whole Northern Italy by the Government. The application of increasingly rigorous containment measures allowed to reduce the impact of the CoViD-2019 pandemic on the Italian National Health System but at the same time these restriction measures gave also the opportunity to assess the effect of anthropogenic activities on air pollutants in an unprecedented way. This paper aims to study the impact of the partial and total lockdown (PL and TL, respectively) on air quality in the Metropolitan City of Milan. As results, the severe limitation of people movements following the PL and the subsequent TL determined a significant reduction of pollutants concentration mainly due to vehicular traffic (PM10, PM2.5, BC, benzene, CO, and NOx). The lockdown led to an appreciable drop in SO2 only in the city of Milan while it remained unchanged in the adjacent areas. Despite the significant decrease in NO2 in the TL, the O3 exhibited a significant increase, probably, due to the minor NO concentration. In Milan and SaA the increase was more accentuated, probably, due to the higher average concentrations of benzene in Milan than the adjacent areas that might have promoted the formation of O3 in a more significant way.


Assuntos
Poluição do Ar , Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Poluentes Atmosféricos , COVID-19 , Cidades , Monitoramento Ambiental , Humanos , Itália , Material Particulado , SARS-CoV-2
15.
J Environ Manage ; 264: 110490, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250911

RESUMO

Sludge recovery/disposal represents one of the most crucial aspects related to the management of wastewater treatment plants. The most widely diffused technology for the treatment of industrial and municipal wastewaters is the conventional activated sludge (CAS) process, which is characterized by a relatively high excess sludge production. Different technical solutions are proposed in the literature for sludge minimization and they can be applied either on wastewater line (WL) or sludge line (SL). This work is focused on different approaches based on the use of Thermophilic Aerobic Membrane Reactor (TAMR): this can be added to a CAS plant, and integrated to WL or SL, yielding a significant sludge reduction. The process performance was analysed in terms of volatile solids (VS) reduction and specific sludge production. The TAMR was tested both at full-scale and pilot-scale with different feeding substrates: industrial wastewater for the full-scale plant; industrial wastewater, sludge and a mix of these for the pilot-scale plants. The results obtained are: (i) good solids removal (38-90% and 40-50% in terms of VS for sludge and mix of industrial wastewater and sludge, respectively), (ii) low specific sludge production (0.01-0.09 kgVSS produced kgCOD removed-1 for industrial wastewater and 0.014-0.069 kgVSS produced kgCOD removed-1 for mix of industrial wastewater and sludge) and (iii) a significant reduction of sludge when CAS is improved with the TAMR technology.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Reatores Biológicos , Águas Residuárias
16.
Environ Technol ; 41(19): 2554-2563, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30681396

RESUMO

Sewage sludge and aqueous wastes are usually treated in separate facilities. Both may pose specific issues, mainly related to the uncertainty of the recovery/disposal route and costs, for the sludge, and to the extremely variable quantitative and qualitative properties, for the aqueous waste. In the present work, the co-digestion of thickened sludge and aqueous wastes in a Thermophilic Aerobic Membrane Reactor (TAMR) was studied in order to allow the almost complete reduction of sludge directly in wastewater treatment plants (WWTPs). Different conditions (aerobic and alternate aeration) were tested in a pilot plant, at the semi-industrial scale. The TAMR plant was operated at 48°C with constant organic load rate (5 kgCOD m-3 d-1) and hydraulic retention time (5 days). The main results obtained are the following: (I) high overall COD (78-97%) and total phosphorus (>60%) removal rate under both the studied aeration conditions; (II) increase of ammonia concentration due to the effective ammonification of organic nitrogen; (III) low specific sludge production (0.04[Formula: see text]) in the thermophilic reactor.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Fósforo , Eliminação de Resíduos Líquidos
17.
Water Environ Res ; 92(1): 11-25, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31385641

RESUMO

The sludge management represents a considerable amount of operational costs for wastewater treatment plants (WWTPs). Issues concerning the treatment and the recovery/disposal of biosolids are gaining importance especially in Lombardy region, where the biosolid landspreading on agricultural soils is a very common practice. The aim of this work was to evaluate the results obtained from a survey carried out on the biosolids/sludge, derived from WWTPs, ingoing to and outgoing from the STPs (sludge treatment plants-authorized for the treatment on behalf of third parties) located in Pavia Province. Moreover, the characterization of agricultural soils that receive the biosolids is carried out. Furthermore, the whole biosolid management chain, from production to landspreading on agricultural soils, was studied, highlighting the critical issues based on the survey results. The results obtained suggested the following actions: (a) the reduction of sludge production in WWTPs; (b) a more "controlled" production in terms of biosolid qualitative characteristics; (c) better "selection" of the sludge ingoing to STPs; and (d) more effective actions to control the "response" of the agricultural soils. Furthermore, full compliance with the best spreading practices on the soils is required, as well as a better use of agronomic skills to obtain a higher resource valorization. PRACTITIONER POINTS: In this work, the characteristics of biosolid spread in agricultural soils in Pavia Province were analyzed. The minimization of sludge production in WWTPs is encouraged in order to reduce critical issues related to biosolid management. The stabilization process in WWTPs should improve in order to obtain a better quality sludge. A better "selection" of the sludge ingoing to STPs and a more effective monitoring of the agricultural soils are encouraged.


Assuntos
Biossólidos , Poluentes do Solo , Agricultura , Esgotos , Solo
18.
J Hazard Mater ; 387: 121668, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31784132

RESUMO

In recent years, photoelectrocatalysis (PEC) for the treatment of industrial wastewaters (IWWs) has been repeatedly proposed. However, despite the number of tests reported in literature, only a few of them were conducted on real IWWs. In this study, real pharmaceutical IWWs showing an intense recalcitrant color were treated by PEC and H2O2-assisted PEC (UV/TiO2/Bias and UV/H2O2/TiO2/Bias, respectively) on TiO2 meshes having sub-micrometric features obtained by Plasma Electrolytic Oxidation. Photolysis (UV), chemical oxidation (H2O2) and H2O2-assisted photolysis (UV/H2O2) were tested in the same reactor for comparison. The configuration UV/H2O2/TiO2/bias showed the best results in term of decolorization efficiency and rate, where decolorization was 55 % (single-step H2O2 dosing) and 44 % (three-step H2O2 dosing), after 2 h of contact time. In the same contact time, UV and UV/TiO2/Bias processes did not give decolorization. A more effective COD removal was measured for the PEC processes, UV/H2O2/TiO2/Bias (-24 %) and UV/TiO2/Bias (-20 %), while COD removal by UV was almost 0 %. Correspondingly, the SOUR values showed that PEC combined with a single-step H2O2 dosage was the most effective configuration, leading to the highest biodegradability of the treated IWW with respect to the other processes. The energy consumption analysis demonstrated that PEC+H2O2 (single-step dosage) optimized energy costs.


Assuntos
Peróxido de Hidrogênio/química , Resíduos Industriais/prevenção & controle , Titânio/química , Águas Residuárias/química , Purificação da Água/métodos , Catálise , Eletroquímica/métodos , Luz , Oxirredução , Titânio/efeitos da radiação
19.
Environ Sci Pollut Res Int ; 26(11): 10727-10737, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30778935

RESUMO

In the last years, the upgrading of wastewater treatment plants (WWTPs) could be required in order to comply with the more stringent regulation requirements. Nevertheless, the main issue is related to the surface availability. A proper solution could be represented by the attached biomass processes, in particular the moving bed biofilm reactors (MBBR), that have a significant footprint reduction with respect to conventional activated sludge (CAS). However, MBBR showed an important disadvantage: the poor aeration energy efficiency due to the use of coarse bubble diffusers, which guarantee high reliability and low maintenance costs with respect to fine bubble ones. Moreover, the presence of carriers inside the reactor emphasizes this aspect. The aim of this work is to verify the benefits achievable by installing a fine bubble aeration system inside a MBBR system. The comparison, in terms of oxygen transfer efficiency, between a medium bubble aeration system and a fine ceramic bubble diffuser was studied and the effect of biofilm growth on oxygen transfer was assessed. Several tests were carried out in order to test the operation of a coarse and a fine bubble side aeration at different air flow rates, both in clean water conditions, in order to evaluate the influence of carriers (Chip M type) on the aeration efficiency, both in wastewater conditions with the aim to assess the effect of bacteria growth on the carriers. The main results are the following: (i) the fine bubble system placed off-center ensured good mixing even without using the mixer; (ii) the fine bubble side aeration system compared to the coarse ones did not show significant advantages in terms of oxygen transfer efficiency; (iii) the increase in specific air flow rate negatively influenced the aeration efficiency; (iv) the presence of biomass had a positive effect on the oxygen transfer yield.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Oxigênio/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Aerobiose , Biomassa , Difusão , Desenho de Equipamento , Modelos Teóricos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/microbiologia , Purificação da Água/instrumentação
20.
J Environ Manage ; 236: 727-745, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772730

RESUMO

It is evident from many recent papers that release of colored wastewater into the environment is source of pollution and this is a problem that particularly affect textile, dyeing and food industries. The review: (i) presents an analysis of various mechanisms involved in the different processes for color removal; (ii) describes conveniences and disadvantages that may exist in adopting one type of treatment in spite of another; (iii) reports the results of approximately 180 experimental tests. Both examples of treatments already widely applied to the real scale and still in the experimental phase are reported. This work focuses on different types of chemical/physical, chemical, electrochemical and biological processes applied in the field of color removal from industrial wastewater. Common chemical/physical treatments such as coagulation/flocculation, adsorption and membrane filtration as well as chemical-type processes are discussed, both those that exploit the traditional oxidizing chemical agents such as Ozone, H2O2 and reactive based on chlorine and those based on the principle of advanced chemical oxidation. In particular, both Hydroxyl radical based Advanced Oxidation Processes (AOPs) and Sulfate radical based AOPs are reported. The most commonly used Electrochemical processes for the removal of color are also presented as well as biological treatments. Based on more than 200 papers, this review provides important information on the use, effectiveness, advantages and downsides of the various treatments aimed at removing the color from the wastewater with a look at the technologies still under development.


Assuntos
Ozônio , Poluentes Químicos da Água , Cor , Floculação , Peróxido de Hidrogênio , Resíduos Industriais , Oxirredução , Indústria Têxtil , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA